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1. Introduction

This topic is concerned with studying spaces through their isometry groups. At the center
of attention are simply-connected manifolds X with transitive isometry groups G and the closed
manifolds which arise as quotients by discrete subgroups.

Euclidean and hyperbolic manifolds are then considered in more detail, where some classification
and finiteness results can be established and compared. (The two geometries are also related on
another level: in finite-volume hyperbolic manifolds, small neighborhoods of cusps have boundaries
which are closed Euclidean manifolds.)

The strategy of understanding a geometry through a group of transformations dates back to
Felix Klein’s Erlangen Program, which described Euclidean, affine, and projective geometry in
such terms. When the stabilizers of points are compact, the tools of Riemannian geometry can
be applied to classify and understand the model geometries (G,X). We begin with a more careful
discussion of these.

2. Model Geometries and Lie Groups

It would be nice to start with some idea of what kinds of spaces and isometry groups should be
under consideration. Thurston gives the following definition and theorem in [8], §3.8.

Definition 1. Let X be a smooth manifold, and let G ⊂ Diff X be a Lie group. A manifold M is
modeled on (G,X) if M is a quotient of X by a discrete subgroup of G.

The pair (G,X) is a model geometry if all of the following hold.

(a) X is connected and simply connected.
(b) G acts transitively on X with compact point stabilizers.
(c) G is not contained in any larger group of diffeomorphisms of X with compact point stabi-

lizers.
(d) There exists at least one compact manifold modeled on (G,X).

It is a classically known result that the two-dimensional model geometries are S2, R2, and H2.
While analogues of these three were also known to exist in the three-dimensional case, it was only
with Thurston’s work in the 1970s that the full list of three-dimensional model geometries was
finally established.

Theorem 1 (Classification of 3-D Model Geometries). There are eight three-dimensional
model geometries (G,X). They are:

• S3, R3, H3 (3-dimensional stabilizers)

• S2 × R, H2 × R, Heis3, P̃SL(2,R) (1-dimensional stabilizers)
• Sol (0-dimensional stabilizers)

Proof (sketch). Restrict attention to the identity component G′ of G; then the stabilizer G′x of a
point x will be a connected closed subgroup of SO(3).

1



2 ANDREW GENG DISCUSSED WITH BENSON FARB

• If G′x = SO(3), then the resulting metric on X has constant sectional curvature and is
determined analogously to the 2-dimensional case.
• If G′x = SO(2), then X has a G′-invariant foliation that makes X a fiber bundle with a

connection. The curvature makes X either a product space or (via results from contact
geometry) the universal cover of a unit tangent bundle.
• If G′x is trivial, then G′ is a 3-D Lie group and can be determined using its Lie algebra.

Case-by-case inspection then eliminates duplicates and identifies G from G′. �

In the hopes of understanding the manifolds modeled on (G,X), we examine discrete subgroups
Γ of G. Manifolds modeled on some geometries are relatively easy to classify; for example, up to
diffeomorphism there are only four manifolds modeled on S2 × R.

Classification results for Euclidean and hyperbolic space are more difficult. We will rely on the
strategy of understanding parts or covers of X/Γ by finding subgroups of Γ whose behavior is easier
to understand—say, nilpotent or even Abelian. To do so, we employ the following theorem.

Theorem 2 (Schur-Zassenhaus Theorem). Let G be a Lie group. Then there is some neigh-
borhood U of the identity such that any discrete subgroup Γ ⊂ G generated by Γ ∩ U is nilpotent.
([3] §4.12)

Proof (sketch). If a = expx and b = exp y are elements of G sufficiently near the identity, then

log[a, b] = [x, y] +
1

2
[x+ y, [x, y]] + · · · .

So by Taylor’s theorem and bilinearity of the Lie bracket,

d([a, b], 1) ≤ Cd(a, 1)d(b, 1)

where C is some constant depending on the metric on G. Then for appropriately small U , the kth
nested commutators of elements of U lie within 2−k of 1. Since Γ is discrete, its lower central series
must reach {1} in finitely many steps. �

3. Classifying Euclidean Manifolds

Manifolds modeled on Rn are quotients of it by discrete subgroups of the Euclidean isometry
group IsomRn. Scaling such manifolds yields other, non-isometric Euclidean manifolds; so instead
of trying to classify them up to isometry, we look for a classification up to diffeomorphism.

A key set of results in this direction are the Bieberbach theorems, which describe the structure of
the discrete subgroups of IsomRn. For closed Euclidean manifolds, these theorems give a complete
classification in the following sense. [2]

(1) Any Euclidean manifold M is finitely covered by a flat torus.
(2) The diffeomorphism type of M is determined by π1(M).
(3) There exist only finitely many M of any given dimension.

Theorem 3 (Bieberbach’s First Theorem). Let Γ be a discrete cocompact subgroup of IsomRn.
Then Γ contains a lattice L ⊂ Rn with finite index.

Proof (sketch). Apply Schur-Zassenhaus to obtain some nilpotent Γ′ ⊂ Γ. The neighborhood U can
be taken as the product of Rn and a neighborhood V of the identity in O(n), and then compactness
of O(n) makes Γ/Γ′ finite.

By choice of U , Γ′ contains all pure translations in Γ. Nilpotency of Γ′ prevents it from nontriv-
ially rotating any subspaces spanned by such pure translations. Cocompactness then forces these
pure translations to form a lattice in Rn, which then ensures N has no nontrivial rotation, so we
can take L = Γ′. �

Theorem 4 (Bieberbach’s Second Theorem). Any isomorphism f : Γ→ Γ′ of discrete cocom-
pact subgroups of IsomRn is induced by some affine map g : Rn → Rn.
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Proof (sketch). Let Γ embed in two ways in IsomRn and act accordingly on Rn×Rn. The transla-
tions in Γ form its unique maximal normal Abelian subgroup T , so T is independent of embedding.
T acts trivially on some foliation of Rn × Rn by parallel copies of Rn, so Γ/T acts on the space of
leaves. As a finite group, Γ/T fixes some leaf, which can be taken as the graph of g. �

Theorem 5 (Bieberbach’s Third Theorem). Fix n. There are only finitely many isomorphism
classes of discrete cocompact subgroups Γ of IsomRn.

Proof (sketch). Bieberbach’s First Theorem ensures Γ is an extension of some finite F ⊂ GL(n,Z)
by Zn—that is, there is an exact sequence

0→ Zn → Γ→ F → 1.

An argument bounding lengths and volumes shows that, up to conjugacy, GL(n,Z) admits only
finitely many finite subgroups. Each extension is named by an element of H2(F ;Zn), each of which
has a representative 2-cocycle F ×F → Zn with values in a bounded set (with the bound depending
only on F ). �

We now turn toward a discussion of analogous results for hyperbolic manifolds.

4. Hyperbolic Manifolds

A hyperbolic manifold is a manifold modeled on Hn for some n. It inherits the metric with
constant sectional curvature −1. We begin with the Mostow Rigidity theorem, which implies that
closed hyperbolic manifolds are classified up to isometry by their fundamental groups. Afterward
we will consider how closely the situation for hyperbolic manifolds can be expected to resemble
what Bieberbach’s Third Theorem did for the Euclidean case.

4.1. Mostow Rigidity.

Theorem 6 (Mostow Rigidity Theorem). If M and N are closed hyperbolic manifolds of
dimension at least 3 and with isomorphic fundamental groups, then M and N are isometric. [4]

Proof sketch #1 (Mostow-Thurston proof). An isomorphism π1(M)→ π1(N) induces a homotopy

equivalence f : M → N , which lifts to a π1-equivariant quasi-isometry f̃ : Hm → Hn, which induces
a π1-equivariant homeomorphism ∂f̃ : Sm−1∞ → Sn−1∞ between the spheres at infinity. Since π1(M)

acts ergodically on Sm−1∞ ×Sm−1∞ , we can show ∂f̃ to be conformal. Then ∂f̃ is also induced by an
isometry of hyperbolic space, which by π1-equivariance descends to an isometry between M and
N . �

Proof sketch #2 (Gromov’s proof). Obtain the π1-equivariant homeomorphism ∂f̃ as above. Using
the measure homology of M , define

‖M‖ = inf {‖µ‖ | µ ∈ [M ]}
where ‖µ‖ denotes the total variation of µ. This is a topological invariant; so ‖M‖ = ‖N‖, which

forces f̃ to preserve whether a set of points in Sm−1∞ spans an ideal m-simplex of maximal volume
in Hm.

By a result of Haagerup and Munkholm, having maximal volume is equivalent to being ideal and
regular. Choose a conformal g : Sm−1∞ → Sm−1∞ so that g ◦∂f̃ fixes the vertices of some regular ideal
m-simplex. Euclidean distance and angle constraints yield a family of simplices whose vertices are
fixed by g ◦ ∂f̃ and are dense in Sm−1∞ . Then g ◦ ∂f̃ is the identity, so ∂f̃ is conformal; and we
conclude as before. �

The fundamental group determines more about a hyperbolic manifold—explicitly, the metric
and thereby the volume—than it does for a Euclidean manifold. The following section exhibits
closed hyperbolic manifolds that have infinitely many covers of different, finite volumes; so unlike



4 ANDREW GENG DISCUSSED WITH BENSON FARB

in the Euclidean case, even the homotopy types of closed hyperbolic manifolds do not form a finite
set. Still, after restricting attention to only the hyperbolic manifolds with volume under a given
bound, there may be hope of recovering some finiteness results; this will be discussed in the section
afterward.

4.2. Arithmetic Construction of Hyperbolic Manifolds. To check that compact hyperbolic
manifolds can have nontrivial compact covers, we construct hyperbolic manifolds of any dimension
n ≥ 1 using the following recipe, due to [6].

On Rn × R, define the quadratic form φ(x, t) = t2
√

2 − x2, and let G be the subgroup of
GL(n+1,R) preserving φ. The hyperboloid model of Hn identifies Hn with a component of φ−1(1),
with G acting by isometries. Let Γ be the subgroup of G consisting of matrices whose entries lie in
Z[
√

2].

Theorem 7 (Sullivan). Γ is discrete in G, and Hn/Γ is compact.

Proof (sketch). Let G be the group preserving the Galois conjugate of φ. Discreteness follows from
the discreteness of `0 = Z[

√
2]n+1 in Rn+1 × Rn+1.

G × G acts on lattices in Rn+1 × Rn+1, and Γ is the stabilizer of `0. A result of Hermite and
Mahler shows (G×G)/Γ has compact closure; so letting Gx be a point stabilizer in G, Gx\G/Γ is
compact. �

These are not necessarily manifolds, as Γ can have torsion. To remedy this, we extract a torsion-
free subgroup of finite index. Having finite index ensures the corresponding cover is still compact;
and being torsion-free ensures it’s actually a manifold.

Lemma 1 (Selberg’s Lemma). Let A be a finitely generated subring of C and Γ a subgroup of
GL(n,A). Then Γ has a torsion-free subgroup with finite index. [5]

Proof (sketch). For prime p, let Γp ⊂ Γ be the kernel of reduction mod p. Pick distinct p and q;
Γp ∩ Γq is a desired subgroup. �

Some work is needed to define an appropriate notion of reduction mod p for A, but this is the
vague strategy. Further finite-index subgroups can continue to be obtained by intersecting with
more kernels.

Remark. In the above construction, if n = 1 then we could have taken φ(x, t) = t2 − kx2 for any
non-square k ∈ Z and defined Γ to contain only integer matrices. Then (0, 1) ∈ φ−1(1), and by
cocompactness of Γ there are infinitely many other integer points in φ−1(1)—that is, infinitely
many solutions to Pell’s equation!

4.3. The Margulis Lemma and the Thick-Thin Decomposition. The Margulis Lemma ex-
tends Schur-Zassenhaus to draw conclusions about group elements which move a given point by
small distances without necessarily being close to the identity. It leads to a decomposition of finite-
volume hyperbolic manifolds into a “thick part” and a “thin part”; this in turn can be used toward
an understanding of the volume spectrum of hyperbolic manifolds.

Lemma 2 (Margulis). For each n, there exist ε > 0 and m > 0 such that if Γ is a discrete
subgroup of IsomHn generated by elements which move some point x by a distance less than ε, then
Γ contains a nilpotent subgroup with finite index at most m. ([1] D.1.1)

Proof (sketch). Choose a neighborhood U of the identity in IsomHn as in Schur-Zassenhaus. Let
Gx be the stabilizer of x, and let V be a neighborhood of Gx. Take m such that m− 1 translates
of U cover V , and let W be a neighborhood of Gx with W = W−1 and Wm ⊂ V .

Then if Γ ∩W generates Γ, the subset Γ ∩ U generates a subgroup with index no more than m.
Since Gx ⊂W , a suitable ε can be chosen based on W . �
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Using this we can decompose hyperbolic manifolds M into manageable pieces. Given d > 0, let
M<d be the set of x ∈ M which cannot be the center of an embedded open ball of radius 1

2d; let

M≥d = M rM<d, which we call the thick part ; and let M≤d = M<d, which we call the thin part.

Theorem 8 (Thick-Thin Decomposition). Given n, choose ε as in the Margulis Lemma. Then
for d < ε and a complete hyperbolic manifold M , each component of M≤d is homeomorphic to either

• a disk bundle over the circle (a neighborhood of a short geodesic) or
• the product of a Euclidean manifold with [0,∞) (a neighborhood of a cusp).

Further, M≥d is compact if and only if M has finite volume. ([8], §4.5)

Proof (sketch). If no element of π1(M) moves x ∈ Hn by less than d, then x lies over the thick part
M≥d; and if some does, then x lies over the thin part M<d.

For γ ∈ π1(M), let its tube T (γ) be the set of points in Hn that γ moves by less than d—so that
each component of M<d has a cover whose components are unions of tubes. The Margulis Lemma
implies that elements of π1(M) whose tubes are in the same component have the same fixed points
at infinity—so each component is a neighborhood of either a geodesic (two fixed points) or a cusp
(one fixed point).

The final claim is proved by checking that such neighborhoods have finite volume. �

4.4. Finiteness Theorems for Hyperbolic Manifolds. One application of the thick-thin de-
composition is to prove results about the volume spectrum of hyperbolic manifolds. In dimensions 4
and higher, the thin parts can almost be ignored; and the possible volumes—while not finite—form
a discrete set. However, in dimension 3 the story is more complicated, and both the thick and thin
parts must be considered in order to understand the volume spectrum.

Theorem 9 (Wang Finiteness Theorem). For n ≥ 4, the set of volumes of complete finite-
volume hyperbolic n-manifolds is a discrete subset of R. ([1], E.3.2)

Proof (sketch). Consider all such n-manifolds M with volume ≤ V . Van Kampen’s theorem allows
removing tubes from M without affecting π1, and when only cusps remain the result deformation
retracts onto M≥ε; so π1(M) ∼= π1(M≥ε).
M≥ε (or a deformation retract of it) has a good cover by a bounded number of ε

2 -balls, the
combinatorics of which determine π1(M≥ε) ∼= π1(M) among a finite set of possibilities. This
determines M by Mostow Rigidity (the non-compact version), so volM ≤ V for finitely many
M . �

Compare this to the Euclidean case, where we found finitely many diffeomorphism types of closed
manifolds—here, only when we control the volume do we have any sort of finiteness condition.

The theorem fails for n = 3, where Van Kampen’s theorem does not allow us to ignore tubes.
We can still conclude that bounding the volume allows only finitely many homotopy types of the
thick part ; but by a theorem of Thurston on hyperbolic Dehn surgery, the set of volumes has limit
points in R. ([7] Ch. 5)

To deal with the problem in dimension 3, we introduce the geometric topology on the set Hn of
complete, finite-volume hyperbolic n-manifolds. Loosely, the topology is defined through conver-
gence, which is defined by a notion of nearness: M and N are near each other if for some small ε,
some diffeomorphism M≥ε → N≥ε is approximately an isometry. ([7] Ch. 5)

Theorem 10 (Jørgensen Finiteness Theorem). Let n ≥ 3. The map

vol : Hn → R
is continuous and proper. Moreover, for any C > 0, there is some finite set of hyperbolic 3-manifolds
M1, . . . ,Mr with volume ≤ C such that any hyperbolic 3-manifold with volume ≤ C is obtained by
hyperbolic Dehn surgery on some Mi.
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Proof (sketch). Under the geometric topology, nearby manifolds have almost-isometric thick parts;
so bounding the volume difference arising from the thin parts establishes continuity of vol. Proper-
ness (geometrically convergent subsequences in sequences where volume converges) is checked by
constructing a limiting thick part using gluing maps and then filling in the boundary components
with cusps.

Define Ak ⊂ H3 inductively by setting A0 = H3 and declaring Ak to be the set of limit points of
Ak−1. Members of Ak have at least k cusps, and each cusp occupies some minimum volume, which
bounds k depending on C.

Choose the list of Mi by taking elements of Ak ∩ vol−1([0, C]) which are not obtained from
elements of Ak+1 ∩ vol−1([0, C]). Thurston’s Hyperbolic Dehn Surgery Theorem (proven using
the isomorphism Isom+H3 ∼= PSL(2,C) to study perturbations of commuting parabolic elements)
ensures that, for each k, only finitely many elements are chosen. �
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